

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL ANNUAL PRETREATMENT REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2006-0067

JANUARY 1 – DECEMBER 31, 2009

TABLE OF CONTENTS

2009 SBWRP REPORT	1
Distribution of Permits and Flows	4
Active Permits	5
SIU Regulated Parameters	6
SIU Category, Process, and Pretreatment Technology	9
BMRs and SIU Inactivations	11
SIU Sampling	12
Non SIU Permits	16
Silver BMPs	17
Dry Cleaner BMPs	18
SBWRP Influent and Effluent Data Summary	19

SOUTH BAY WATER RECLAMATION PLANT

I. Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22.3 acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is approximately 300 feet north of the international boundary between Mexico and the United States and approximately 2000 feet west of the International Wastewater treatment Plant. The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of nearly 107,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/ or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the International Wastewater treatment Plant (IWTP), which is operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" diffuser with two 1980 foot long diffusers. The IWTP currently discharges a maximum of 25 MDG of advanced primary treated wastewater from the City of Tijuana. This discharge is regulated by Regional Board Order No. 96-50 (NPDES Permit No. CA0108928). The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, direct filtration with conventional deep bed mono-media filters, backwash facilities, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment plant (PLWWTP). Solids from the SBWRP are pumped to the PLWWTP through the South Metro Interceptor.

During CY2002 the South Bay Water Reclamation Plant (SBWRP) began operations, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high TDS flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the Point Loma plant, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines with the on-going 3.5 MGD GAPS flow for a total of 8.33 MGD. In that some wastewater from areas tributary to the GAP and ORPS is able to be diverted to the PLWWTP via the South Metro Interceptor, facilities tributary to the GAP and ORPS are included in Annual Pretreatment Reports for both plants.

II.

A. Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the USEPA has identified under Section 307(a) of the CWA, and which are known or suspected to be discharged by industrial users. The summary includes a full priority pollutant scan.

See reports that follow Item J.

B. Upset, Interference, and Pass-through

There has been one on-going incident of interference with ORPS operations and the treatment plant by rags known to be discharged, in part, by the RJ Donovan Correctional Center. The program has determined that this is a facility-specific issue and not a problem that would be effectively addressed by a local limit. Due to delays having to do with obtaining state funding, RJ Donovan implemented temporary measures to comply with the October 1, 2008 Compliance Order due date; installation of permanent technology to maintain compliance is due March 1, 2010.

There have been six influent samples exceeding the SBWRP reclaimed water limit of 1200 mg/L and 122 influent values exceeding the reclaimed water goal of 1000 ppm. These elevated TDS levels have been attributed to infiltration and, in part, to an increase in the number of SIUs tributary to the plant discharging high TDS wastestreams from self-regenerating water softeners. The program is working with the SBWRP Plant Operators and contributing industries to ensure salt loadings are controlled so they do not result in non-compliance or non-saleable recycled water. The program conducts monthly sewershed monitoring for TDS to quickly identify infiltration. Furthermore, the SBWRP is in the process of installing a reverse osmosis system to remove TDS. The program plans to include facility-specific BMPs and / or discharge limits for TDS in permits as needed, however a study conducted in FY2009 determined that, even if the regulated industries in the SBWRP sewershed eliminated their water softeners, the plant would still need to install TDS removal technology to meet reclaimed water sale standards.

C. List of Deletions, Additions, and Name Changes of Significant Industrial Users during CY09

There were no SIU name changes during CY09.

Two new SIUs initiated discharge to SBWRP in CY09:

Ind #	Ind Name	Pmt Issue Dt	SIU Type	Applicable Standards
36-0001	Otay Mesa Energy Center LI	LC 20-Jul-09	CIU	Steam Electric (PSNS) 40CFR 423.17
12-0212	Cantare Foods Inc	01-Jul-09	Flow	SIU Class 3 Food Manufacturing

No SIUs were deleted from the CY08 CIU list during CY09. No existing facilities discharging to SBWRP became SIUs in CY09.

D. Characterization of the Compliance Status of Each SIU

The compliance status of SIUs tributary to the SBWRP is included in the combined Annual SIU Compliance Status Report; see Chapter 4 of the CY2009 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045.

No IUs have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

E. Programs San Diego has implemented to reduce pollutants from industrial users not classified as SIUs

The Public Utilities Department of San Diego controls pollutants discharged by non-SIUs and from non-industrial sources through a combination of Class 2 and 3 permits,

Best Management Practice Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters Two and Three of the CY2009 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045.

F. Pretreatment Program Changes

During CY2009, the program made the following significant changes: None

There were no other significant changes in operating the pretreatment program in the areas of administrative structure, local limits, monitoring program, legal authority, enforcement policy, or funding or staffing levels.

G. Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2 of the CY2009 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details.

H. Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the CY2009 Annual Report for the Point Loma POTW NPDES Permit No. CA0109045).

I. Sludge Disposal Methods

Sludge from the SBWRP is conveyed to the Miramar Biosolids Center for processing and disposal in combination with sludge from throughout the Metropolitan Sewerage System service area. See Chapter 5 of the CY2009 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details.

J. Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP at this time.

Distribution of Permits and Industrial Flows by Area Treatment Plant 6

Report run on: December 30, 2009 5:55 PM Page 1

Class		1		2		2F		3		4		4C		4D		5	Total	Total
Area	Count	IW (gpd)	Permits	flow (gpd)														
12	2	864	4	10,487	20	3	4	202,810	56	22,824	4		2	0	5		97	236,988
13	1	250	5	6,803	19	520	3	15,141	45	14,297	0		2	C	6		81	37,011
36	1	43,200	0		0		0		0		0		0		0		1	43,200
	4	44,314	9	17,290	39	523	7	217,951	101	37,121	4		4	C	11		179	317,199

Active Permits, Treatment Plant 6

Report run on: December 30, 2009 5:38 PN

Description	SI	USIU Type	Permit Count
1 - Federally Regulated	Υ	CIU	4
			4
2 - Local: Toxic Pollutants in Process	Ν		9 .
			9
2F - Film Processing only	Ν		39
			39
3 - Local: Conventional Pollutants in Process	N		3
	Υ	FLOW	4
			7
4 - No Discharge: Ww Generated or Chemicals Stor	ed N		101
			101
4C - No Discharge: Fed Regulated Ww Generated	Ν	CIU ZERO	4
		the second second	4
4D - Dry Cleaning only, no discharge	N		4
			4
5 - No IW Generated: No potential to discharge	N		11
			11
Total:			179

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 4, 2010 3:05 PM

acility	Permit	Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
2-0038	03-A	RJ Donovan Correctional Facility	480 Alta Rd , San Diego	100	56,600	OIL/GREASE	Н	Н	L	DM		500	mg/L
						PH	Н	Н	L	DM	5	12.5	рН
2-0144	03-A	AP Precision Metals	1215 30th St , San Diego	110	264	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
										MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
										MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
										MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	рЙ
						SILVER	Q	Q	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
										MO		1.48	mg/L
2-0154	02-A	Heinz Frozen Foods	7878 Airway Rd , San Diego	110	90,000	CHROMIUM	Q	Q	0	DM		5	mg/L
			, ,			OIL/GREASE	M	M	L	DM		500	mg/L
						PH	M	M	L	DM	5	12.5	рЙ
						PH HIGHEST	N		L	DM		12.5	pH
						TEMP	M	M	L	DM		65.5	DegC
2-0202	01-A	Spec-Built Systems Inc	2150 Michael Faraday Dr , San Diego	110	600	CADMIUM	Q	Q	F	DM		.11	mg/L
		.,	, , , , , , , , , , , , , , , , , , ,							MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
							_	_	-	MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
						227.0	_	_	•	MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
							_	_	-	MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	pH
						SILVER	Q	Q	F	DM	-	.43	mg/L
						J * LIX	~	•	•	MO		.24	mg/L
						TTO(412 , 422) D	۸	0	F	DM			ug/L
						()(4 3+4331-P	А	()	г	1,11/1		/1.30	
						TTO(413+433)-P ZINC	A Q	Q Q	F	DM		2130 2.61	mg/L

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 4, 2010 3:05 PM

acility	Permit	Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
-0212	01-A	Cantare Foods Inc	7651 Saint Andrews Av , San Diego	100	22,882	OIL/GREASE	М	М	L	DM		500	mg/L
						PH	M	M	L	DM	5	12.5	рН
-0220	01-A	Circle Foods LLC	8411 Siempre Viva Rd , San Diego	110	30,000	OIL/GREASE	M	M	L	DM		500	mg/L
						PH	M	M	L	DM	5	12.5	pН
						PH HIGHEST	N		L	DM		12.5	рН
						TEMP	M	M	L	DM		65.5	DegC
-0115	04-A	Doncasters GCE Industries	1891 Nirvana Av , Chula Vista	330	208	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
										MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
										MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
										MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	pН
						PH HIGHEST	S		L	DM		12.5	pН
						SILVER	Q	Q	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
										MO		1.48	mg/L
				410	41	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
						` ,				MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
										MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
										MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	pH
						PH HIGHEST	S		Ĺ	DM		12.5	pН
						SILVER	Q	Q	F	DM		.43	mg/L
						· · · · · · · · · · · · · · · · · · ·	_	_	-	MO		.24	mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 4, 2010 3:05 PM

Facility Permit	Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
	Doncasters GCE Industries Otay Mesa Energy Center LLC	1891 Nirvana Av , Chula Vista 647 Alta Rd , San Diego	410 110	41 43,000	ZINC CHROMIUM OIL/GREASE PH PH HIGHEST TDS ZINC	Q Q Q Q Q	Q Q Q Q	F F L L L	MO DM DM DM DM DM	5	1.48 .2 500 12.5 12.5 3200	mg/L mg/L mg/L pH pH mg/L mg/L

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: January 4, 2010 3:10 PM

Facility Permit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section		Pre Treat Code
12-0038 03-A	RJ Donovan Correctional Facili	ty 56,600	100	Main Sewer	Local	130 133		1	GRIND
12-0144 03-A	AP Precision Metals	264	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1 2	PH SETTLE
12-0154 02-A	Heinz Frozen Foods	90,000	110	Food Manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C GREASE
12-0202 01-A	Spec-Built Systems Inc	600	110	Iron Phosphating	Federal	433	.17	1 2 3 4 5 6	SETTLE RECYL CC PH MIXER HAUL
12-0212 01-A	Cantare Foods Inc	26,210	100	Cheese Manufacturing Lateral	Local	134 137		J	
			210	Bakery	Local			1 2 3	SETTLE HAUL ELBOW
12-0220 01-A	Circle Foods LLC	30,000	110	Food manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C SD-FP
13-0115 04-A	Doncasters GCE Industries	250	200	Bldg 2 Lateral, 1887 Nirvana Av	Local			1 2	ZERO HAUL
			300	Bldg 3 Lateral, 757 Main St	Local	130		1 2	ERU+1 HAUL
			330	Dye Pen/ Vibra Clean	Federal	433	.17	1 2 3	SETTLE IX FILT-O
			410	Dye Pen/Water Jet Cutting	Federal	433	.17	1 2 3	SETTLE IX FILT-O

9

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: January 4, 2010 3:10 PM

Facility Permit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local		CFR Section		Pre Treat Code
13-0115 04-A	Doncasters GCE Industries	250	410					4	O/W
								5	HAUL
36-0001 01-A	Otay Mesa Energy Center LLC	43,200	110	WetSac blowdown + OWS	Federal	423	.17	1	SETTLE
								2	PH
			120	PCB zero discharge	Federal	423	.17	1	ZERO
8									

Baseline Monitoring Reports Requested or Received Between 01-Jan-09 and 31-Dec-09 Treatment Plant 6

Report run on: December 30, 2009 5:37 PN

Completed Permit Name Activity Facility

SIUs Discharging to Treatment Plant 6 Inactivated between 01-Jan-09 and 31-Dec-09

Report run on: December 30, 2009 6:06 PM

Class	Facility	Name	Permit	Pmt Inact Dt	Reason
0.10.0					

Count

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-09 and 31-Dec-09

Report run on: March 22, 2010 12:19 AM Page 1

Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0038	03-A	RJ Donovan Correctional Facility	100	Main Sewer	L	COD	8	6
		j				CONDUCT-COMP	9	
						OIL/GREASE	7	6
						PH	8	5
						SILVER CERT		1
						TSS	8	6
12-0144	03-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	F	CADMIUM	4	4
				3 \ 1 3/		CHROMIUM	4	4
						COPPER	4	4
						CYANIDE(T)	4	4
						FLOW		4
						LEAD	4	4
						NICKEL	4	4
						PH	4	3
						SILVER	4	4
						TTO CERT	•	4
						TTO(413+433)-P	1	•
						ZINC	4	4
12-0154	02-A	Heinz Frozen Foods	110	Food Manufacturing	L	COD	12	12
12 0101	0271	1101112 1 102011 1 0043	110	1 ood Manarastaning	_	CONDUCT-COMP	12	
						OIL/GREASE	23	13
						PH	24	12
						PH HIGHEST	21	12
						PH LOWEST		
						TEMP	24	12
						TSS	12	12
12-0202	02-A	Spec-Built Systems Inc	110	Iron Phosphating	F	CADMIUM	3	1
12-0202	02-A	Spec-Built Systems inc	110	non i nospitating	•	CHROMIUM	3	1
						COPPER	3	1
						CYANIDE(T)	3	1
						FLOW	J	2
						LEAD	3	1
						NICKEL	3	1
						PH	3	1
						SILVER	3	1
						TTO CERT	3	4
							1	4
						TTO(413+433)-P	1	1
12 0212	01 Λ	Cantara Faada Ina	100	Change Manufacturing Lateral	1	ZINC	3	1
12-0212	01-A	Cantare Foods Inc	100	Cheese Manufacturing Lateral	L	COD	5	6
						FLOW		5
								12

12

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-09 and 31-Dec-09

Report run on: March 22, 2010 12:19 AM Page 2

Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0212	01-A	Cantare Foods Inc	100			FLOWMETER READ 1		5
						FLOWMETER READ 2		5
						OIL/GREASE	9	5
						PH	5	5
						TSS	5	6
			210	Bakery	L	CLARIFIER RPT		
						COD	5	
						FLOW		3
						TSS	5	
12-0220	01-A	Circle Foods LLC	110	Food manufacturing	L	COD	10	12
						CONDUCT-COMP	10	
						FLOW		12
						OIL/GREASE	18	12
						PH	20	12
						PH HIGHEST		
						PH LOWEST		
						TEMP	20	12
						TSS	10	12
13-0115	04-A	Doncasters GCE Industries	200	Bldg 2 Lateral, 1887 Nirvana Av	L	ZERODISCHRG CERT		2
			300	Bldg 3 Lateral, 757 Main St	L			
			330	Dye Pen/ Vibra Clean	F	CADMIUM	4	2
						CHROMIUM	4	2
						COPPER	4	2 2 2 2 1
						CYANIDE(T)	4	2
						FLOW		
						LEAD	4	2
						NICKEL	4	2
						PH	4	2
						PH HIGHEST	2	
						PH LOWEST	2	
						SILVER	4	2
						TTO CERT		1
						TTO(413+433)-P	1	
						ZINC	4	2
			410	Dye Pen/Water Jet Cutting	F	CADMIUM	2	1
						CHROMIUM	2	1
						COPPER	2	1
						CYANIDE(T)	2	1
						FLOW		

13

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-09 and 31-Dec-09

Report run on: March 22, 2010 12:19 AM Page 3

Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
13-0115	04-A	Doncasters GCE Industries	410			NICKEL	2	1
						PH	2	1
						PH HIGHEST	1	
						PH LOWEST	1	
						SILVER	2	1
						TTO CERT		
						TTO(413+433)-P	1	
						ZINC	2	1
36-0001	01-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	CADMIUM	4	
						CHROMIUM	4	2
						COD	4	2
						COPPER	4	
						FLOW		2
						LEAD	4	
						NICKEL	4	
						OIL/GREASE	4	2
						PH	4	2
						PH HIGHEST	3	
						PH LOWEST	3	
						TDS	4	2
						TSS	4	2
					_	ZINC	4	2
			120	PCB zero discharge	F	ZERODISCHRG CERT		2

8

TTO Sampling at SIUs discharging to Treatment Plant 6 between 01-Jan-09 and 31-Dec-09

Report run on: March 21, 2010 11:16 PM

Page 1

Facility	Pmt	Name	Conn	Principle Process	Batch	City TTO Samples	Self TTO Samples	Self Certification
12-0144	03-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	N	1		4
12-0202	01-A	Spec-Built Systems Inc	110	Iron Phosphating	N	1		4
13-0115	04-A	GCE Industries Inc	330	Dye Pen/ Vibra Clean	N	1		1
			410	Dye Pen/Water Jet Cutting	N	1		

Active Non-SIU Permits, Treatment Plant 6

Report run on: December 30, 2009 5:24 PM Page 1

Class	Facility Permit	Name		Address		City	Zip
2	12-0024 02-A 12-0140 01-A 12-0143 02-A 12-0145 03-A 13-0159 03-A 13-0278 03-A 13-0316 02-A 13-0327 02-A 13-0399 01-A	US Border Patrol Kaiser Foundation Health Plan Adesa San Diego Larkspur Energy SOS Metals San Diego Allied Waste Systems dba Allied Waste Services SD Fuller Ford Dresser-Rand ATC of San Diego	3752 4652 2175 9355 635 881 560 1675 3650A	Beyer Palm Cactus Otay Mesa Anita Energy Auto Park Brandywine Main	BI Av Rd Rd St Wy Dr Av Suite E&F St	San Diego San Diego San Diego San Diego Chula Vista Chula Vista Chula Vista Chula Vista Chula Vista	92173 92154 92154 92154 91911 91911 91911 91911
3	9 13-0095 01-A 13-0298 02-A 13-0439 01-A 3 12	Otay Valley Shell MMC Chula Vista LLC Toyota Chula Vista	4555 3497 650	Main Main Main	St St St	Chula Vista Chula Vista Chula Vista	92012 91911 91911

Film Processors Subject to Best Management Practices, Treatment Plant 6

Report run on: December 30, 2009 5:32 PM

lass	Facility	Permit	Name			Address				City
F	12-0081	00-A	San Ysidro Health Center	4004		Beyer	BI			San Diego
	12-0100	01-A	County; George Bailey Detention	446		Alta	Rd			San Diego
	12-0112	01-A	NAC	1330		30th	St	Suite	E	San Diego
	12-0113	01-A	So San Diego Veterinary Hosp	2910		Coronado	Av			San Diego
	12-0114	02-A	EZ Smiles Dental Care	1850		Coronado	Av			San Diego
	12-0115	01-A	Lewis J Dorria DDS	2930		Coronado	Av			San Diego
	12-0117	01-A	Montgomery High School	3250		Palm	Av			San Diego
	12-0119	01-A	Jeffrey W Brown DDS	1761		Palm	Av			San Diego
	12-0121	01-A	Jerome A Bannister DDS	4370		Palm	Av	Suite	С	San Diego
	12-0122	02-A	Carlos Garcia DDS	1270		Picador	BI	Suite	L-M	San Diego
	12-0123	02-A	Southland Plaza Dental	655		Saturn	Bl	Suite	G	San Diego
	12-0124	01-A	I-5 Palm Ave Medical Clinic	655		Saturn	BI			San Diego
	12-0125	02-A	San Ysidro Dental Care	2004		Dairy Mart	Rd			San Diego
	12-0126	01-A	Wal-Mart # 2150	710		Dennery	Rd			San Diego
	12-0146	02-A	CVS Pharmacy # 9115	645		Saturn	BI			San Diego
	12-0186	01-A	Rancho Vista Medical & Therapy Center Inc	342	W	San Ysidro	BI	Suite	F	San Diego
	12-0208	01-A	CVS Pharmacy # 9524	3320		Palm	Av			San Diego
	12-0209	01-A	Rite Aid # 5668	1856		Coronado	Av			San Diego
	12-0222	01-A	Jose L Lopez DDS Inc	3490		Palm	Av	Unit	1	San Diego
	12-0231	01-A	Juvenile Detention Facility	446		Alta	Rd			San Diego
	13-0048	02-A	Hyspan Precision Products	1685		Brandywine	Av			Chula Vist
	13-0117	02-A	Bay Port Press	645		Marsat	St	Suite	D	Chula Vist
	13-0235	01-A	Photo Max	1367		3rd	Av			Chula Vist
	13-0249	01-A	The Pet Clinic	3326		Main	St			Chula Vist
	13-0255	01-A	Hilltop Dentistry	11		Naples	St			Chula Vist
	13-0256	01-A	Langford Chiropractor	4360		Main	St	Suite	209	Chula Vist
	13-0257	01-A	Robert N Woodall DDS Inc	330		Oxford	St			Chula Vist
	13-0261	02-A	Palomar Dental Group	648		Palomar	St			Chula Vist
	13-0306	02-A	CVS Pharmacy # 9113	645	Е	Palomar	St			Chula Vist
	13-0333	01-A	Costco Wholesale # 781	1130		Broadway				Chula Vist
	13-0355	01-A	Walgreens # 7867	1430		Eastlake	Ру			Chula Vist
	13-0379	01-A	Amazon Animal Hospital	1172		3rd	Av	Suite	D8	Chula Vist
	13-0387	01-A	Perpecta Dental Group	314		Palomar	St			Chula Vist
	13-0388	01-A	Palomar Dental Group	664		Palomar	St	Suite	1103	Chula Vist
	13-0412	01-A	Wal-Mart Store # 5305	1150		Broadway				Chula Vist
	13-0414	01-A	Walgreens # 2623	1111		3rd	Av			Chula Vist
	13-0419	01-A	CVS Pharmacy # 9196	1376		Third	Av			Chula Vist
	13-0442	01-A	Wal-Mart # 3516	1360		Eastlake	Ру			Chula Vis
	13-0456	01-A	East Lake Plaza Dental	2060		Otay Lakes	Rd	Suite	230	Chula Vist

Dry Cleaners Subject to Best Management Practices, Treatment Plant 6

Report run on: December 30, 2009 5:10 PM

Class	Facility	Permit	Name		Address				City
4D	12-0106	02-A	Saturn Cleaners	655	Saturn	Bl	Suite	E	San Diego
	12-0108	02-A	Rainbow Cleaners	2004	Dairy Mart	Rd	Suite	121	San Diego
	13-0172	02-A	Sunny Fresh Cleaners # 11	1478	Melrose	Av			Chula Vista
	13-0176	01-A	Speedy Clean Specialists Inc	1327	3rd	Av			Chula Vista
	4								

SBWRP Influent and Effluent Data Summary

The results of all analyses performed on the SBWRP influent and effluent are summarized on the following pages.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Biochemical Oxygen Demand Concentration (24-hour composite)

From 01-JAN-2009 To 31-DEC-2009

		Daily	Daily		Daily	Daily	Percent
		Influent	Influent		Effluent	Effluent	Removal
	Influent	Value	Value	Effluent	Value	Value	BOD
	Flow	(mg/L)	(lbs/Day)	Flow	(mg/L)((lbs/Day)	(%)
=========	=======						======
JANUARY -2009	8.6	335	24028	4.9	5.6	229	98.3
FEBRUARY -2009	8.7	326	23654	5.4	5.4	243	98.3
MARCH -2009	8.6	354	25390	4.5	8.4	315	97.6
APRIL -2009	8.3	348	24089	3.0	8.4	210	97.6
MAY -2009	8.5	367	26017	1.3	7.7	83	97.9
JUNE -2009	8.3	347	24020	1.1	7.8	72	97.8
JULY -2009	8.3	358	24781	0.2	7.3	12	98.0
AUGUST -2009	8.2	365	24962	0.3	5.8	15	98.4
SEPTEMBER-2009	8.2	358	24483	0.2	6.1	10	98.3
OCTOBER -2009	8.2	345	23594	2.1	7.4	130	97.9
NOVEMBER -2009	8.0	377	25153	2.9	8.0	193	97.9
DECEMBER -2009	8.1	347	23441	5.8	12.4	600	96.4
	========						======
Average	8.3	352	24468	2.6	7.5	176	97.9

Annual Mass Emissions are calculated from monthly averages of flow and BOD, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL

Total Suspended Solids Concentration (24-hour composite)

From 01-JAN-2009 To 31-DEC-2009

		Daily	Daily		Daily
	Influent	Influent	Influent	Percent	Influent
	Flow	TSS	VSS	VSS	Mass Emission
	(MGD)	(mg/L)	(mg/L)	(%)(lbs/Day)
===========	=======			=======	
JANUARY -2009	8.6	336	298	88.7	24099
FEBRUARY -2009	8.7	299	260	87.0	21695
MARCH -2009	8.6	290	257	88.6	20800
APRIL -2009	8.3	298	261	87.6	20628
MAY -2009	8.5	303	266	87.8	21480
JUNE -2009	8.3	307	273	88.9	21251
JULY -2009	8.3	303	268	88.4	20974
AUGUST -2009	8.2	290	255	87.9	19833
SEPTEMBER-2009	8.2	289	253	87.5	19764
OCTOBER -2009	8.2	282	244	86.5	19285
NOVEMBER -2009	8.0	309	269	87.1	20616
DECEMBER -2009	8.1	296	255	86.1	19996
=========	=======			=======	======
Average	8.3	300	263		20868

Total Suspended Solids Concentration (24-hour composite)

	Effluent Flow (MGD)	Daily Effluent TSS (mg/L)	Daily Effluent VSS (mg/L)		Daily Effluent ass Emiss lbs/Day)	Removal	Percent Removal VSS (%)
JANUARY -2009	4.9	 2.6	======= 2.0	76.9	 106	99.2	99.3
FEBRUARY -2009	5.4	3.1	2.5	80.6	140	99.0	99.0
MARCH -2009	4.5	5.3	4.6	86.8	199	98.2	98.2
APRIL -2009	3.0	7.2	6.3	87.5	180	97.6	97.6
MAY -2009	1.3	6.4	5.4	84.4	69	97.9	98.0
JUNE -2009	1.1	7.5	6.3	84.0	69	97.6	97.7
JULY -2009	0.2	6.4	5.0	78.1	11	97.9	98.1
AUGUST -2009	0.3	5.6	4.7	83.9	14	98.1	98.2
SEPTEMBER-2009	0.2	5.8	4.8	82.8	10	98.0	98.1
OCTOBER -2009	2.1	5.8	4.7	81.0	102	97.9	98.1
NOVEMBER -2009	2.9	5.7	4.8	84.2	138	98.2	98.2
DECEMBER -2009	5.8	7.0	6.0	85.7	339	97.6	97.6
==========	=======			=======		=======	======
Average	2.6	5.7	4.8		115	98.1	98.2

Annual Mass Emissions are calculated from monthly averages of flow and TSS, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS = Volatile Suspended Solids TSS = Total Suspended Solids

nd=not detected; NS=not sampled; NA=not analyzed

* The limit is 85% removal on daily running averages.

SOUTH BAY WATER RECLAMATION PLANT Effluent to Ocean Outfall

From 01-JAN-2009 To 31-DEC-2009

	Flow (mgd)	рН	Settleable Solids (ml/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Total Dissolved Solids (mg/L)
Limit:	15					, - ,	
	=======	=======	=======	=======	=======	=======	=======
JANUARY -2009	4.89	7.31	ND	5.56	2.61	1.99	947
FEBRUARY -2009	5.36	7.42	ND	5.37	3.07	2.45	1010
MARCH -2009	4.45	7.45	ND	8.43	5.25	4.60	1120
APRIL -2009	2.97	7.46	ND	8.43	7.23	6.30	994
MAY -2009	1.32	7.54	ND	7.65	6.36	5.36	1010
JUNE -2009	1.07	7.52	ND	7.77	7.46	6.29	1040
JULY -2009	0.25	7.64	ND	7.25	6.35	5.03	950
AUGUST -2009	0.31	7.57	ND	5.79	5.61	4.67	948
SEPTEMBER-2009	0.16	7.59	ND	6.12	5.75	4.82	935
OCTOBER -2009	2.09	7.56	ND	7.41	5.79	4.70	882
NOVEMBER -2009	2.94	7.65	ND	7.95	5.72	4.80	909
DECEMBER -2009	5.79	7.57	ND	12.4	7.04	6.01	933
	=======	=======	=======	=======	=======	=======	=======
Average	2.63	7.52	ND	7.51	5.69	4.75	973

	Oil				
	&	Outfall	Residual		Dissolved
	Grease	Temperature	Chlorine	Turbidity	0xygen
	(mg/L)	(C)	(mg/L)	(NTU)	(mg/L)
Limit:					
==========	=======	=======	=======	=======	=======
JANUARY -2009	4.4	21.4	0.08	1.75	5.69
FEBRUARY -2009	2.1	20.6	0.06	1.63	5.78
MARCH -2009	2.1	22.2	0.06	2.13	5.00
APRIL -2009	1.8	23.0	0.04	2.61	4.92
MAY -2009	1.9	23.5	0.05	2.21	5.02
JUNE -2009	2.5	24.8	0.04	2.79	3.72
JULY -2009	<1.2	26.1	0.05	2.43	4.26
AUGUST -2009	1.5	26.7	0.05	1.96	4.30
SEPTEMBER-2009	2.0	26.4	0.05	2.03	4.51
OCTOBER -2009	1.7	23.8	0.05	2.42	4.38
NOVEMBER -2009	3.6	23.9	0.05	2.77	4.36
DECEMBER -2009	3.4	22.0	0.06	4.77	4.21
==========	=======	=======	=======	=======	=======
Average	2.3	24.8	0.05	2.46	4.25

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT From 01-JAN-2009 To 31-DEC-2009

Influent to Plant

	Flow (mgd)	рН	Total Dissolved Solids (mg/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity* (NTU)
Limit:							
		=======	=======	=======		=======	
JANUARY -2009	8.61		1000	335	336	298	
FEBRUARY -2009	8.68	7.46	1040	326	299	260	185
MARCH -2009	8.60		1110	354	290	257	
APRIL -2009	8.28		1050	348	298	261	
MAY -2009	8.48	7.69	1040	367	303	266	197
JUNE -2009	8.29		1030	347	307	273	
JULY -2009	8.33		988	358	303	268	
AUGUST -2009	8.24		976	365	290	255	132
SEPTEMBER-2009	8.18	7.82	979	358	289	253	
OCTOBER -2009	8.21		899	345	282	244	166
NOVEMBER -2009	8.03	7.56	952	377	309	269	
DECEMBER -2009	8.09		982	347	296	255	
=========	=======	=======	=======	=======	=======	=======	=======
Average	8.34	7.63	1004	352	300	263	

^{* =} Monitored Quarterly

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE Trace Metals

From: 01-JAN-2009 To: 31-DEC-2009

Analyte:		Aluminum	Aluminum	Antimony	Antimony	Arsenic	Arsenic
MAX MDL Unit	ts:	47 UG/L	47 UG/L	2.9 UG/L	2.9 UG/L	.4 UG/L	.4 UG/L
Source:		Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:					110000		480*
JANUARY - 26	=== === 009	:======== 1220	 193	ND	ND	0.90	0.78
FEBRUARY -26		1180	181	ND ND	ND	0.56	0.78
	009 009	885	173	ND ND	ND ND	0.65	0.45
	009 009	878	116	ND ND	ND	1.09	0.89
	005 009	773	129	ND ND	ND ND	0.96	0.71
	009 009	946	148		ND ND	0.51	<0.40
				ND			
	009 000	1210	142	ND	ND	0.65	0.48
	009 000	1110	117	ND	ND	1.04	0.85
SEPTEMBER-20		977	114	ND	ND	1.08	0.69
OCTOBER -26		1320	108	ND	ND	0.63	0.63
NOVEMBER -26		1070	111	3.30	ND	0.90	0.48
DECEMBER -26		1090	115	ND	ND	0.80	0.61
AVERAGE		1055	137	0.28	ND	0.81	0.59
_			_				
Analyte: MAX MDL Unit	+	Barium .039 UG/L	Barium .039 UG/L	Beryllium .022 UG/L	Beryllium	Boron 7 UG/L	Boron 7 UG/L
	LS:	•		•	.022 UG/L		,
Source:		Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		:=======		==========	3.1	==========	
	 009	104.0	63.3	NR	ND	322	316
FEBRUARY -26		105.0	66.7	ND	ND	313	345
	009	97.0	61.6	NR	ND	308	302
	009 009	128.0	88.9	ND ND	ND ND	309	214
	005 009	101.0	78.1	ND ND	ND ND	321	357
	009 009	103.0	62.6	ND ND	ND ND	314	308
	009 009	109.0	72.3	ND ND	ND	318	319
	009 000	101.0	62.1	ND	ND	321	355
SEPTEMBER-26		104.0	68.2	ND	ND	307	302
OCTOBER -26		99.7	65.8	ND	ND	309	318
NOVEMBER -26		81.7	51.3	ND	ND	327	315
DECEMBER -26		103.0 =======	61.3	ND ======	ND	306	165
AVERAGE		103.0	66.9	ND	ND	315	301
Analyte:		Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MAX MDL Unit	+c•	.53 UG/L	.53 UG/L	1.2 UG/L	1.2 UG/L	0.85 UG/L	0.85 UG/L
Source:		Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:	:	IIII Ideiic	96*	IIII Idelic	190*	IIII Ideiic	Liliaelic
				=========	=======	=========	
	009	ND	ND	3.0	ND	NR	ND
FEBRUARY -20	009	ND	ND	4.2	1.4	ND	ND
MARCH -26	009	ND	ND	3.7	ND	NR	ND
APRIL -20	009	ND	ND	3.5	1.3	NR	ND
MAY -26	009	ND	ND	2.7	1.6	ND	ND
JUNE -26	009	1.1	1.0	4.5	ND	NR	ND
JULY -20	009	ND	ND	3.3	ND	NR	ND
AUGUST -26	009	ND	ND	2.8	<1.2	ND	ND
SEPTEMBER-26		ND	ND	3.4	1.7	NR	ND
OCTOBER -26		ND	ND	3.8	ND	ND	ND
NOVEMBER -26		ND	ND	3.4	ND	NR	ND
DECEMBER -26		ND ND	ND	3.4	ND ND	NR NR	ND
========				==========		=========	
AVERAGE		0.1	0.1	3.5	0.5	ND	ND

^{*} = 6 Month Median performance goal. All others are monthly average performance goals.

ND= not detected, NA= not analyzed, NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE Trace Metals

From: 01-JAN-2009 To: 31-DEC-2009

Analyte: MAX MDL Units: Source: Month/Limit:	Copper 2 UG/L Influent	Copper 2 UG/L Effluent 97	Iron 37 UG/L Influent	Iron 37 UG/L Effluent	Lead 2 UG/L Influent	Lead 2 UG/L Effluent 19*
JANUARY -2009	64	22	681	58	ND	2.3
FEBRUARY -2009	81	14	639	44	4.3	ND
MARCH -2009	74	9	486	45	ND	ND
APRIL -2009	85	16	570	138	3.1	4.7
MAY -2009	68	11	431	62	ND	ND
JUNE -2009	74	12	554	40	4.6	ND
JULY -2009	80	17	668	ND	3.3	ND
AUGUST -2009	77	24	593	98	ND	ND
SEPTEMBER-2009	68	7	540	ND	2.5	ND
OCTOBER -2009	67	9	530	47	ND	ND
NOVEMBER -2009	81	6	838	38	2.4	ND
DECEMBER -2009	81	13	513	81	ND	ND
			=========		=========	
AVERAGE	75	13	587	54	1.7	0.6
Analyte:	Manganese	Manganese	Mercury	Mercury	Molybdenum	Molybdenum
MAX MDL Units:	.24 UG/L	.24 UG/L	.09 UG/Ĺ	.09 UG/Ĺ	.89 UG/L	.89 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:				38*		
==========		=======		=======	=========	
JANUARY -2009	58.5	20.7	0.24	ND	NR	4.5
FEBRUARY -2009	54.3	31.0	ND	ND	5.9	3.5
MARCH -2009	50.9	28.0	ND	ND	NR	3.0
APRIL -2009	56.7	48.2	0.22	ND	NR	3.5
MAY -2009	49.8	20.2	ND	ND	6.7	3.7
JUNE -2009	45.3	17.8	ND	ND	NR	4.9
JULY -2009	38.3	17.6	0.13	ND	NR	3.5
AUGUST -2009	32.9	16.7	0.17	ND	7.5	3.5
SEPTEMBER-2009	30.8	14.5	0.11	ND	NR	4.5
OCTOBER -2009	30.9	16.4	0.10	ND	7.4	3.4
NOVEMBER -2009	31.3	12.6	0.10	ND	NR	3.0
DECEMBER -2009	29.3	15.9	0.61	0.23	NR	4.0
AVERAGE	42.4	21.6	0.14	0.02	6.9	3.8

^{*} = 6 Month Median performance goal. All others are monthly average performance goals.

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE Trace Metals

From: 01-JAN-2009 To: 31-DEC-2009

Analyte: MAX MDL UNITS: Source: Month/Limit:	Nickel .53 Influent	Nickel .53 Effluent 480*	Selenium .28 Influent	Selenium .28 Effluent 1400*	Silver .4 Influent	Silver .4 Effluent 52*
JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009 MAY -2009 JUNE -2009 JULY -2009 AUGUST -2009 SEPTEMBER -2009	6.66 6.40 4.14 4.82 4.34 8.53 7.17 5.04 5.89	9.00 3.58 3.04 4.28 3.74 4.43 5.87 5.81	2.04 1.77 1.59 2.33 2.13 1.66 1.61 1.81 1.97	0.84 0.57 0.69 1.53 0.74 0.71 0.74 0.76	1.2 0.4 1.1 0.7 0.9 0.9 1.4 1.3	ND ND ND ND ND ND ND ND
OCTOBER -2009 NOVEMBER -2009 DECEMBER -2009 ======= AVERAGE	4.83 7.66 3.81 ====================================	3.66 2.78 2.96 4.52	1.54 1.42 2.01 	0.60 0.39 0.85 	0.9 2.2 2.3 	ND 0.4 ND ====== 0.1
Analyte: MAX MDL Units: Source: Month/Limit:	Thallium 3.9 UG/L Influent	Thallium 3.9 UG/L Effluent	Vanadium .64 UG/L Influent	Vanadium .64 UG/L Effluent	Zinc 2.5 UG/L Influent	Zinc 2.5 UG/L Effluent 1100*
JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009 MAY -2009 JUNE -2009 JULY -2009 AUGUST -2009 SEPTEMBER -2009 OCTOBER -2009 DECEMBER -2009	ND ND ND ND ND ND ND ND ND ND ND	ND N	NR 1.6 NR NR 1.3 NR NR 1.2 NR 1.2 NR	ND ND 0.8 0.8 ND ND ND 1.1	158 185 131 152 143 135 156 175 150 153 157	39.8 45.3 27.8 46.6 38.8 32.5 32.7 37.5 31.1 32.1 31.8 30.9
AVERAGE	ND	ND	1.5	0.5	154	35.6

 $^{^{*}}$ = 6 Month Median performance goal. All others are monthly average performance goals.

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT 2009 Annual Report

Cations

From 01-JAN-2009 To 31-DEC-2009

	Calcium		Magnesium		Lithium	
MDL:	.04	mg/L	.1	mg/L	.002	mg/L
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.
		======	=======	======	=======	======
JANUARY -2009	75.2	75.8	30.6	29.8	0.036	0.035
FEBRUARY -2009	71.8	73.4	31.7	31.9	0.028	0.028
MARCH -2009	74.7	77.9	33.4	32.8	0.031	0.033
APRIL -2009	86.4	85.1	31.7	30.9	0.052	0.049
MAY -2009	80.7	79.6	32.9	31.1	0.042	0.041
JUNE -2009	72.6	80.8	28.8	29.9	0.038	0.038
JULY -2009	71.8	75.4	26.3	26.2	0.042	0.042
AUGUST -2009	67.4	68.4	27.2	26.2	0.039	0.038
SEPTEMBER-2009	64.7	71.7	24.9	26.2	0.039	0.039
OCTOBER -2009	68.0	70.1	27.3	27.3	0.041	0.041
NOVEMBER -2009	65.2	66.8	31.1	30.2	0.029	0.028
DECEMBER -2009	74.1	74.3	29.1	28.0	0.050	0.049
	=======	======	=======	======	=======	======
Average:	72.7	74.9	29.6	29.2	0.039	0.038

	Sodium		Potassium	
MDL:	1	mg/L	.3	mg/L
	Inf.	Eff.	Inf.	Eff.
	=======	======	========	=====
JANUARY -2009	189	185	19.1	17.5
FEBRUARY -2009	174	182	17.9	17.1
MARCH -2009	193	191	20.6	18.5
APRIL -2009	181	179	21.1	18.2
MAY -2009	190	189	20.7	18.7
JUNE -2009	179	189	22.1	20.8
JULY -2009	172	181	21.6	18.6
AUGUST -2009	172	178	21.9	18.6
SEPTEMBER-2009	152	176	18.9	19.5
OCTOBER -2009	182	198	22.3	19.6
NOVEMBER -2009	185	194	21.5	20.8
DECEMBER -2009	180	191	22.1	20.6
		======	=======	=====
Average:	179	186	20.8	19.0

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Anions

From: 01-JAN-2009 To: 31-DEC-2009

Analyte: MDL: Units: Month	Bromide .1 MG/L INFLUENT	Bromide .1 MG/L EFFLUENT	Chloride 7 MG/L INFLUENT	Chloride 7 MG/L EFFLUENT	Fluoride .05 MG/L INFLUENT	Fluoride .05 MG/L EFFLUENT
JANUARY - 2009 FEBRUARY - 2009 MARCH - 2009 APRIL - 2009 MAY - 2009 JUNE - 2009 JULY - 2009 AUGUST - 2009 SEPTEMBER - 2009 OCTOBER - 2009 NOVEMBER - 2009 DECEMBER - 2009 DECEMBER - 2009 AVERAGE	NR 0.360 NR 0.290 0.349 0.258 0.300 0.205 0.247 0.234 0.314 0.258	0.415 0.430 0.460 0.405 0.450 0.355 0.365 ND 0.240 0.218 0.336 0.307	NR 239 NR 214 220 203 213 202 204 201 224 213	223 246 264 235 235 217 209 105 198 222 240 217	NR 0.540 NR 0.495 0.493 0.619 0.443 0.401 0.408 0.485 0.640 0.527	0.520 0.620 0.550 0.790 0.720 0.520 0.475 0.210 0.450 0.488 0.550 0.609
Analyte: MDL: Units: Month	Nitrate .04 MG/L INFLUENT	Nitrate .04 MG/L EFFLUENT	.2 MG/L INFLUENT	Ortho Phosphate .2 MG/L EFFLUENT	9 MG/L INFLUENT	Sulfate 9 MG/L EFFLUENT
JANUARY - 2009 FEBRUARY - 2009 MARCH - 2009 APRIL - 2009 MAY - 2009 JUNE - 2009 JULY - 2009 JULY - 2009 SEPTEMBER - 2009 OCTOBER - 2009 NOVEMBER - 2009 DECEMBER - 2009 AVERAGE	NR 0.2 NR 3.3 1.4 2.0 3.7 0.1 0.7 1.7 2.7 2.6	24.4 29.2 25.1 32.6 38.0 22.6 29.4 30.7 29.4 38.3 30.6 24.9	NR 12.1 NR 11.4 12.6 12.5 12.2 12.1 11.9 13.1 12.9 12.3	5.15 9.48 2.56 5.64 2.95 1.63 1.80 0.82 1.33 1.26 3.36 3.63	NR 150 NR 199 196 189 181 173 169 142 180 199	202 200 202 267 254 209 221 103 201 219 190 227

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides

From 01-JAN-2009 To 31-DEC-2009

	Ammonia-N	Ammonia-N	Cyanides,Total	Cyanides,Total
	.3	.3	.002 MG/L	.002 MG/L
	Influent	Effluent	Influent	Effluent
Limit:		570		0.096
	===========		===========	
JANUARY -2009	33.4	0.7	ND	ND
FEBRUARY -2009	34.5	ND	ND	0.003
MARCH -2009	29.0	ND	ND	ND
APRIL -2009	31.0	0.8	ND	ND
MAY -2009	28.2	ND	ND	ND
JUNE -2009	36.4	ND	ND	0.002
JULY -2009	33.0	ND	ND	ND
AUGUST -2009	34.4	ND	ND	ND
SEPTEMBER-2009	31.9	ND	ND	ND
OCTOBER -2009	35.2	ND	ND	ND
NOVEMBER -2009	28.2	ND	ND	ND
DECEMBER -2009	35.7	ND	ND	0.002
	==========		==========	
Average:	32.6	0.1	ND	0.001

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean

Analyzed by: TestAmerica Laboratories Richland

From 01-JAN-2009 To 31-DEC-2009

Source	Month	Gross Alpha Radiation	Gross Beta Radiation
		=======================================	=======================================
Effluent	JANUARY -2009	0.0 ± 0.6	22.8 ± 4.0
Effluent	FEBRUARY -2009	2.2 ± 2.0	19.5 ± 4.0
Effluent	MARCH -2009	3.7 ± 2.3	17.5 ± 4.0
Effluent	APRIL -2009	2.6 ± 1.7	20.0 ± 4.0
Effluent	MAY -2009	1.3 ± 2.0	19.2 ± 4.4
Effluent	JUNE -2009	1.5 ± 1.9	22.4 ± 4.2
Effluent	JULY -2009	2.4 ± 1.7	19.2 ± 4.1
Effluent	AUGUST -2009	1.4 ± 1.6	18.4 ± 3.7
Effluent	SEPTEMBER-2009	2.2 ± 2.0	21.4 ± 4.1
Effluent	OCTOBER -2009	1.2 ± 1.8	21.6 ± 4.3
Effluent	NOVEMBER -2009	1.0 ± 1.2	22.5 ± 4.4
Effluent	DECEMBER -2009	-0.6 ± 1.5	24.7 ± 6.2
==========	==========	=======================================	=======================================
AVERAGE		1.6 ± 1.7	20.8 ± 4.3

ND= not detected NA= not analyzed NS= not sampled

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2009 To 31-DEC-2009

			EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF
Analyte	MDL	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Avg
=======================================		=====	===== :		=====	===== :	====	=====	=====	=====	=====	=====	=====		====
Aldrin	7	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxychlordane	6	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis Nonachlor	3	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	8	ND	ND	ND	ND	ND	ND	ND	ND	1
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1221	4000	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1242		NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1248	2000	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1254		NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1260		NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
======================================	==== 7	==== NG/L	0	===== 0	===== 0	===== 0	===== 0	0	===== 0	==== 0	===== 0	===== 0	===== 0	· ===== 0	==== 0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	-	NG/L	0	0	0	0	0	0	0	0	9	9	0	0	0
Polychlorinated biphenyls		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	6	NG/L NG/L	0	0	0	8	0	0	0	0	0	0	0	0	1
ENGOSUITANS			===== :					ں : ====			о =====				1
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlorinated Hydrocarbons		NG/L	0	0	0	8	0	0	0	0	0	0	0	0	1

ND= not detected NA= not analyzed NS= not sampled

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2009 To 31-DEC-2009

			INF FEB	INF MAY	INF AUG	INF OCT	INF
Analyte	MDL	Units	1 20	nai	AUG		Avg
	====	=====	=====	=====	=====	=====	=====
Aldrin	7	NG/L	ND	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	5	ND	1
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA	NA
Oxychlordane	6	NG/L	ND	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	3	NG/L	ND	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND	ND
PCB 1221	4000	NG/L	ND	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND	ND
PCB 1242	4000	NG/L	ND	ND	ND	ND	ND
PCB 1248	2000	NG/L	ND	ND	ND	ND	ND
PCB 1254	2000	NG/L	ND	ND	ND	ND	ND
PCB 1260	2000	NG/L	ND	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND	ND
=======================================	====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0
DDT and derivatives	8	NG/L	0	0	5	0	1
Chlordane + related cmpds.	6	NG/L	0	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	0
	====		=====	=====	=====	=====	=====
Heptachlors	8	NG/L	0	0	0	0	0
	====	=====	=====	=====	=====	=====	=====
Chlorinated Hydrocarbons	4000	NG/L	0	0	5	0	1

ND= not detected NA= not analyzed NS= not sampled

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT Organophosphorus PesticidesEPA Method 614/622 (with additions)

INFLUENT & EFFLUENT

From 01-JAN-2009 To 31-DEC-2009

			Effluent	Effluent	Influent	Influent
Anna Turka	MDI	Units	05-MAY-2009 P468787	06-0CT-2009 P490588	05-MAY-2009 P468782	
Analyte		UNITS		P490588		P490583
Demeton O		UG/L	ND	ND	ND	ND
Demeton S		UG/L	ND.	ND.	ND.	ND
Diazinon		UG/L	ND	ND.	ND.	ND
Guthion		UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
=======================================	===	=====	========			========
Dichlorvos	.05	UG/L	ND	ND	ND	0.1
Dibrom	.2	UG/L	ND	ND	ND	ND
Ethoprop		UG/L	ND	ND	ND	ND
Phorate		UG/L	ND	ND	ND	ND
Sulfotepp		UG/L	ND	ND	ND	ND
Disulfoton		UG/L	ND	ND	ND	ND
Dimethoate		UG/L	ND	ND	ND	ND
Ronnel		UG/L	ND	ND	ND	ND
Trichloronate		UG/L	ND	ND	ND	ND
Merphos		UG/L	ND	ND	ND	ND
Dichlofenthion		UG/L	ND	ND	ND	ND
Tokuthion		UG/L	ND	ND	ND	ND
Stirophos		UG/L	ND	ND	ND	ND
Bolstar		UG/L	ND	ND	ND	ND
Fensulfothion		UG/L	ND	ND	ND	ND
EPN		UG/L	ND	ND	ND	ND
Coumaphos		UG/L	ND	ND	ND	ND
Mevinphos, e isomer		UG/L	ND	ND	ND	ND
Mevinphos, z isomer		UG/L	ND	ND	ND	ND
Chlorpyrifos		UG/L	ND	ND	ND	ND
Thiophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0
Demeton -0, -S		UG/L	0.0	0.0	0.0	0.0
		•	========	========	========	========
Total Organophosphorus Pesticides	.3	UG/L	0.0	0.0	0.0	0.1

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE - Tributyl Tin Analysis

From 01-JAN-2009 To 31-DEC-2009

			EFF FEB	EFF MAY	EFF AUG	EFF OCT	
Analyte	MDL	Units					Average
=========	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND
			INF	INF	INF	INF	
			FEB	MAY	AUG	ОСТ	
Analyte	MDL	Units					Average
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Acid Extractables

From 01-JAN-2009 To 31-DEC-2009

			EFF JAN	EFF FEB	EFF MAR	EFF APR	EFF MAY	EFF JUN	EFF JUL	EFF AUG	EFF SEP	EFF OCT	EFF NOV	EFF DEC	
Analyte	MDL	Units	0,			,		30	002	7.00	52.	•			verage
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-chlorophenol		UG/L	ND	ND											
2,4-dichlorophenol	1.01	UG/L	ND	ND											
4-chloro-3-methylphenol	1.67	UG/L	ND	ND											
2,4,6-trichlorophenol	1.65	UG/L	ND	ND											
Pentachlorophenol	1.12	UG/L	ND	ND											
Phenol	1.76	UG/L	ND	ND											
2-nitrophenol	1.55	UG/L	ND	ND											
2,4-dimethylphenol	2.01	UG/L	ND	ND											
2,4-dinitrophenol	2.16	UG/L	ND	ND											
4-nitrophenol	1.14	UG/L	ND	ND											
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND											
Total Chlorinated Phenols	1 67	===== UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Additional analytes determined;															
2	2 45	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-methylphenol	2.15	UG/L	ND	ND											
3-methylphenol(4-MP is unresolved)		UG/L	NA	NA											
4-methylphenol(3-MP is unresolved)			ND	ND											
2,4,5-trichlorophenol	1.66	UG/L	ND	ND											

			INF	INF	INF	INF	
			FEB	MAY	AUG	OCT	
Analyte	MDL	Units					Average
	====	=====	=====	=====	=====		=====
2-chlorophenol		UG/L	ND	ND	ND	ND	ND
2,4-dichlorophenol	1.01	UG/L	ND	ND	ND	ND	ND
4-chloro-3-methylphenol		UG/L	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	35.0	32.6	40.5	38.0	36.5
2-nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND
2,4-dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND
2,4-dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND
4-nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	35.0	32.6	40.5	38.0	36.5
Total Phenols	2.16	UG/L	35.0	32.6	40.5	38.0	36.5
Additional analytes determined;							
	====	=====	=====	=====	=====	=====	=====
2-methylphenol	2.15	UG/L	ND	ND	ND	ND	ND
<pre>3-methylphenol(4-MP is unresolved)</pre>		UG/L	NA	NA	NA	NA	NA
4-methylphenol(3-MP is unresolved)	2.11	UG/L	124	108	109	110	112
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2009 To 31-DEC-2009

			EFF FEB	EFF MAY	EFF AUG	EFF OCT	EFF
Analyte	MDL	Units	Avg	Avg	Avg		Average
bis(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND	ND
Isophorone	1.53	UG/L	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane	1.01	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	1.44		ND	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Fluorene	1.61		ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether Hexachlorobenzene	1.4	UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND ND	ND	ND
Anthracene	1.34		ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-butyl phthalate		UG/L	ND ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND ND	ND	ND	ND
Fluoranthene	1.33		ND	ND	ND	ND	ND
Pyrene	1.43		ND	ND	ND	ND	ND
Benzidine	1.52		ND	ND	ND	ND	ND
Butyl benzyl phthalate	2.84		ND	ND	ND	ND	ND
Chrysene	1.16		ND	ND	ND	ND	ND
Benzo[A]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
Benzo[K]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND
<pre>3,4-benzo(B)fluoranthene</pre>	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[A]pyrene	1.25	UG/L	ND	ND	ND	ND	ND
<pre>Indeno(1,2,3-CD)pyrene</pre>	1.14	UG/L	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene	1.01		ND	ND	ND	ND	ND
Benzo[G,H,I]perylene	1.09		ND	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND	ND
Delivere Assessing Hidesembers				===== :			
Polynuc. Aromatic Hydrocarbons			0.0	0.0 =====	0.0	0.0	0.0
Base/Neutral Compounds		UG/L	0.0	0.0	0.0	0.0	0.0
======================================		,		===== :			
1-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2009 To 31-DEC-2009

			INF	INF	INF	INF	INF
Analysta	MDL	Units	FEB	MAY	AUG	OCT	Augnaga
Analyte		UNITS	Avg	Avg	Avg	_	Average
bis(2-chloroethyl) ether		UG/L	===== ND	ND	===== ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	1.44	UG/L	ND	ND	ND	ND	ND
2,6-dinitrotoluene	1.53	UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND
Fluorene	1.61	UG/L	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.05	UG/L	12.0	12.1	13.3	9.8	11.8
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND	ND
Phenanthrene	1.34	UG/L	ND	ND	ND	ND	ND
Anthracene	1.29	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	3.96	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.27	UG/L	ND	ND	ND	ND	ND
Fluoranthene	1.33	UG/L	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND
Benzidine		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[A]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	18.1	17.6	15.2	9.0	15.0
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-dichlorobenzidine		UG/L	ND	ND	ND	ND	ND
Benzo[K]fluoranthene		UG/L	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene Benzo[A]pyrene	1.35 l	UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-CD)pyrene		UG/L	ND ND	ND	ND	ND	ND ND
Dibenzo(A,H)anthracene		UG/L	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND	ND
=======================================				=====			
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds		===== UG/L	30.1	29.7	28.5	18.8	26.8
=======================================	====	=====	=====	=====	=====	=====	=====
1-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2009 To 31-DEC-2009

			EFF FEB	EFF MAY	EFF AUG	EFF OCT	EFF
Analyte	MDL	Units					Average
Dichlorodifluoromethane	.66	===== UG/L	===== : ND	: ==== ND	: ==== ND	ND	==== ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Acrolein 1,1-dichloroethane	1.3 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	.3	UG/L	0.67*	0.5	0.4	0.8*	
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	1.4	0.8	0.6	0.9	0.9
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride Benzene	.4 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	0.6	ND	ND	ND	0.2
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4	UG/L	ND	ND	ND	ND	ND
trans-1,3-dichloropropene 1,1,2-trichloroethane	.5 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	1.1	UG/L	ND ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND
1,3-dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND O F
<pre>1,4-dichlorobenzene 1,2-dichlorobenzene</pre>	.4 .4	UG/L UG/L	ND ND	0.5 ND	1.4 ND	ND ND	0.5 ND
=======================================			===== :				
Halomethane Purgeable Cmpnds	.7	UG/L	0.0	0.0	0.0	0.0	0.0
		=====	===== :				
Total Dichlorobenzenes	.5 ====	UG/L =====	0.0	0.0 =====	0.0 =====	0.0	0.0 =====
Total Chloromethanes	.5	UG/L	1.4	1.3	1.0	0.9	1.2
Purgeable Compounds	1.3	===== UG/L	2.0	1.8	2.4	0.9	1.8
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	ND	ND	ND	ND	ND
Acetone	4.5	UG/L	ND	ND	ND	ND	ND
Allyl chloride		===== UG/L	ND	· ==== ND	· · · · · · · · · · · · · · · · · · ·	ND	==== ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-butanone	6.3	UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-methyl-2-pentanone meta,para xylenes	1.3	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
ortho-xylene	.4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND

ND=not detected; NS=not sampled; NA=not analyzed

^{* =} Batch did not meet QC criteria, blank contamination, the blank value for this batch was above MDL. Data is not included in averages.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2009 To 31-DEC-2009

				INF FEB	INF MAY	INF AUG	INF OCT	INF
Analyte	MDL ====	Units	_					Average
Dichlorodifluoromethane	.66	UG/L	=:	==== : ND	==== ND	· ==== ND	ND	ND
Chloromethane	.5	UG/L		ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L		ND	ND	ND	ND	ND
Bromomethane	.7	UG/L		ND	ND	ND	ND	ND
Chloroethane	.9	UG/L		ND	ND	ND	ND	ND
Trichlorofluoromethane Acrolein	.3 1.3	UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
1,1-dichloroethane	.4	UG/L UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	.3	UG/L		ND*	1.3	1.7	1.4*	
trans-1,2-dichloroethene	.6	UG/L		ND	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L		ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L		ND	ND	ND	ND	ND
Chloroform	.2	UG/L		3.7	3.0	2.3	1.7	2.7
1,1,1-trichloroethane	.4	UG/L		ND	ND	ND	ND	ND
Carbon tetrachloride Benzene	.4 .4	UG/L UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloroethane	.5	UG/L		ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L		ND	ND	ND	ND	ND
1,2-dichloropropane	.3	UG/L		ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L		0.8	0.7	ND	ND	0.4
2-chloroethylvinyl ether	1.1	UG/L		ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L		ND	ND	ND	ND	ND
Toluene	.4	UG/L		0.6	12.1	0.7	0.6	3.5
trans-1,3-dichloropropene 1,1,2-trichloroethane	.5 .5	UG/L UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	1.1	UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	.6	UG/L		0.9	0.8	ND	ND	0.4
Chlorobenzene	.4	UG/L		ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L		ND	ND	ND	ND	ND
Bromoform	.5	UG/L		ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L		ND	ND	ND	ND	ND
1,3-dichlorobenzene	.5	UG/L		ND	ND	ND	ND	ND
1,4-dichlorobenzene	.4 .4	UG/L UG/L		1.1 ND	1.5 ND	1.2 ND	0.8 ND	1.2 ND
1,2-dichlorobenzene			=			ND ===== :		
Halomethane Purgeable Cmpnds	.7	UG/L		0.0	0.0	0.0	0.0	0.0
Total Dichlorobenzenes	.5 ====	UG/L =====	=:	0.0	0.0	0.0	0.0	0.0
Total Chloromethanes	.5	UG/L		3.7	4.3	4.0	1.7	3.4
Purgeable Compounds	1.3	UG/L		7.1	19.4	5.9	3.1	8.9
Methyl Iodide	.6	UG/L		ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L		2.0	1.3	5.6	2.1	2.8
Acetone	4.5	UG/L		279	200	292	176	237
Allyl chloride	.6	===== UG/L	=:	==== : ND	==== ND	: ==== ND	ND	ND
Methyl tert-butyl ether	.4	UG/L		ND	ND	ND	ND	ND
Chloroprene	.4	UG/L		ND	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L		ND	ND	ND	ND	ND
2-butanone	6.3	UG/L		ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L		ND	ND	ND	ND	ND
2-nitropropane	12	UG/L		ND	ND	ND	ND	ND
4-methyl-2-pentanone meta,para xylenes	1.3 .6	UG/L UG/L		ND ND	ND ND	ND ND	ND ND	ND ND
ortho-xylene	.4	UG/L		ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L		ND	ND	ND	ND	ND
Styrene	.3	UG/L		ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L		ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.52	UG/L		ND	ND	ND	ND	ND

ND=not detected; NS=not sampled; NA=not analyzed

^{* =} Batch did not meet QC criteria, blank contamination, the blank value for this batch was above MDL. Data is not included in averages.

				INF	INF	INF	INF
Analyte		Units	Equiv	JAN P454813	FEB P458506	MAR P463351	APR P467234
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF		PG/L PG/L	0.050 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND.	ND.	ND.	ND ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND.	ND.	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		•	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
				INF	INF	INF	INF
				MAY	JUN	JUL	AUG
Analyte		Units	Equiv	P468782	P473440	P477633	P481319
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				INF	INF	INF	INF
				SEP	OCT	NOV	DEC
Analyte =========	MDL ===	Units	Equiv	P485365	P490583	P494473	P498358
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND ND	ND ND	ND ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND ND	ND ND	ND ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF		PG/L PG/L	0.100 a 1aa	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND ND	ND ND	ND ND	ND ND
octa CDF		PG/L	0.001	ND ND	ND ND	ND ND	ND ND
		, -	3.301	.40	No	No	.10

Above are permit required CDD/CDF isomers.

ND= not detected

Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

				EFF	EFF	EFF	EFF
				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P454817	P458511	P463355	P467238
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND ND	ND.	ND ND	ND ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.100	ND	ND	ND	ND ND
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND ND	ND.	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF		•	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
_		_		MAY	JUN	JUL	AUG
Analyte		Units	Equiv	P468787	P473444	P477637	P481324
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND ND	ND	ND	ND ND
1,2,3,4,7,8 hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND ND
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF		•	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				SEP	OCT	NOV	DEC
Analyte	MDL	Units	Equiv	P485369	P490588	P494477	P498362
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-techa CDD		PG/L	0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND ND
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDF		PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
		D (CDE :					

Above are permit required CDD/CDF isomers. $\,$ ND= not detected $\,$

				INF TCCD JAN	TCCD	TCCD	INF TCCD APR
Analyte ========		Units	Equiv ======	P454813			P467234
2,3,7,8-tetra CDD		PG/L	1.000	ND			ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND			ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	98	PG/L PG/L	0.100 0.100	ND ND			ND ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND ND			ND ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND			ND
octa CDD		PG/L	0.001	ND			ND
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF		PG/L PG/L	0.100 0.050	ND ND			ND ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND ND			ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,7,8,9-hexa CDF		PG/L PG/L	0.100 0.100	ND ND			ND ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.010	ND ND			ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND			ND
octa CDF	222	PG/L	0.001	ND	ND ND	ND	ND
				INF	INF	INF	INF
				TCCD			TCCD
Analyta	MDI	Units	Equiv	MAY P468782			AUG P481319
Analyte ========			Equiv ======				
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND			ND
1,2,3,4,7,8_hexa_CDD	113 98	PG/L PG/L	0.100	ND ND			ND ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD		PG/L PG/L	0.100 0.100	ND ND			ND ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND			ND
octa CDD	247	PG/L	0.001	ND			ND
2,3,7,8-tetra CDF		PG/L	0.100	ND			ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF		PG/L PG/L	0.050 0.500	ND ND			ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND			ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	ND ND			ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND ND			ND ND
octa CDF		PG/L	0.001	ND			ND
				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
				SEP			DEC
Analyte ========		Units	Equiv ======	P485365	P490583	P494473	P498358
2,3,7,8-tetra CDD		PG/L	1.000	ND			ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND			ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	98	PG/L PG/L	0.100 0.100	ND ND			ND ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND			ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND			ND
octa CDD		PG/L	0.001	ND			ND
2,3,7,8-tetra CDF		PG/L	0.100	ND ND			ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF		PG/L PG/L	0.050 0.500	ND ND			ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND ND			ND ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	ND ND			ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND ND			ND ND
octa CDF		PG/L	0.001	ND			ND
Above are permit requir	ed CI	DD/CDF is	omers.	ND= not	detected		

				EFF TCCD JAN	TCCD FEB	MAR	EFF TCCD APR
Analyte =========		Units	Equiv ======	P454817	P458511	P463355	P467238
2,3,7,8-tetra CDD		PG/L	1.000	ND		ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND			ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND		ND	ND
1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD		PG/L PG/I	0.100 0.010	NC NC		ND ND	ND ND
octa CDD		PG/L	0.001	ND		ND.	ND ND
2,3,7,8-tetra CDF		PG/L	0.100	ND		ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND			ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND ND		ND ND	ND ND
1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF		PG/L PG/L	0.100	NC NC		ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND		ND.	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND		ND	ND
octa CDF		PG/L	0.001	ND	ND ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD			TCCD
				MAY	Z JUN	JUL	AUG
Analyte		Units	Equiv	P468787			481324
2,3,7,8-tetra CDD		PG/L	1.000	ND		ND	ND
1,2,3,7,8-penta CDD		PG/L PG/L	0.500	NC NC		ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	NE			ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND ND	ND	ND
octa CDD		PG/L	0.001	ND		ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND		ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	NE			ND ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.500 0.100	ND ND			ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	NE NE			ND ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND		ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND		ND	ND
octa CDF	222	PG/L	0.001	ND) ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD		TCCD	TCCD
	MDI			SEF		NOV	DEC
Analyte =========		Units	Equiv =====	P485369	P490588	P494477	P498362
2,3,7,8-tetra CDD		PG/L	1.000	NE	ND ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND			ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND		ND	ND
1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD		PG/L	0.100 0.010	ND ND		ND ND	ND ND
octa CDD		PG/L	0.001	NC NC		ND ND	ND ND
2,3,7,8-tetra CDF		PG/L	0.100	NE			ND
1,2,3,7,8-penta CDF		PG/L	0.050	NE		ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND		ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND		ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND		ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND			ND ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100	ND ND		ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF			0.010 0.010	NC NC		ND ND	ND ND
octa CDF		PG/L	0.001	NC NC		ND.	ND
Above are permit require					detected		